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WAVES IN A MEDIUM OF DECREASING DENSITY
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It is explained under what condition instability develops in the wave front when a shock wave
travels in a medium whose density is decreasing. It is shown that under laboratory condi-
tions the buildup of such an instability may be suppressed by a diffusion of wave front seg-
ments into the walls of the system. Such an instability can occur, for example, in certain
astrophysical bodies.

1. The front of a powerful shock wave traveling in a medium whose density decreases is unstable
when there is no magnetic field present [1]. Random curving of the wave front, during which individual
wave elements advance ahead of the front or fall behind it, becomes more frequent with time. Indeed, in a
medium of decreasing density the front of a powerful shock wave moves at an increasing velocity. For this
reason, a front element which has accidentally moved ahead will travel faster and its lead will become
greater, while a front element which has accidentally fallen behind will travel slower and its lag will in-
crease.

These qualitative concepts are also applicable to the case which will be considered here, namely, to
the propagation of a strong shock wave (Mach number M>1) in a medium of decreasing density in the pres-
ence of a transverse magnetic field. As has been shown in [2], the unperturbed front of a shock wave is
accelerated when the Alfvén velocity Hy(x)/V 47mpy(x) increases, py(x) andHy(x) denoting here the unperturbed
density of the medium and the magnetic field intensity, respectively. The subsequent calculation will vali-
date these qualitative concepts also for the case of a magnetic shock wave.

2. We will consider small perturbations in the front of a wave whose length is much shorter than the
length / of an inhomogeneity so that ki > 1, where k denotes the wave number ofaperturbation, and so that
the quasiclassical approximation applies. Furthermore, the medium will be considered perfectly conduct-
ing so that, by virtue of the "freeze-in" condition, the magnetic field intensity vector at every point on the
front will be tangent to the front.

We will assume that the "curving" of the front is a function of the y~coordinate. We will designate
an unperturbed front by X and the coordinate of a perturbed front by E = X 4 &, with 9£/5y assumed small
so that (92/0y)? can be neglected. We then move the origin of the coordinate system to point E and rotate
the coordinates so that the new y'-axis will be tangent to the curved front. The angle of this rotation is
equal to 8£/6y and is, therefore, small; with this accuracy, we have then
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3. In a laboratory system of coordinates the equations of magnetohydrodynamlcs at the front of a
shock wave becomes
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where p, p, £, and w are the pressure, the density, the energy, and the enthalpy per unit mass.

Let us now turn to primed coordinates, then, integrate the equations with respect to x' over the jump
interval, and with respect to y' over an infinitesimal region arcund the point of tangency between the y'-
axis and the wave front. We must also consider that, within the established accuracy,

vy = v.05/dy, H, = Huai/(?y

Then, for step increments in gasdynamic quantities, we obtain the following expressions:
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After algebraic transformations based on the law of mass conservation, we have
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where the subscript "0" refers to the initial values of these quantities. To conditions (3.3), one must add
the "freeze-in" condition (3.4):

H/p=H,/op (3-4)

When perturbations occur, the values of functions p, v, p*, and H for a gas behind the wave front will
differ from their unperturbed values by 6p, 6v, 6p*, and 6H, respectively. If we also introduce the quantity
du = £—tau/ ox, then, for an ideal gas, we obtain the following equations:
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The following relations have been used here:

e=p/{t—1)p, 5p*=p;*6v
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with ¢, denoting the velocity of sound, which become valid when terms of the order k)™ are disregarded

[3].

The system of Egs. (3.5) is homogeneous and its determinant is
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Using the results of {3], we also obtain
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4. We will now consider special cases.
(1). There is no magnetic field present, hy = 0. If, also my = 0 (a strong shock wave), then, A= 0 ex-
cept for y = 2. Then, 6p = d6v =0u = 0, and

o5 (4.1)
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If an unperturbed wave front is accelerated in the direction of decreasing density, then, the displace-

ment | ¢~ u increases, i.e., the displaced element separates from the unperturbed front. This occurs dur-
ing perturbations of either sign.

@).m =0, 0 < hy? < ¥% (y? =) M. An analysis will show that in this case, the determinant is A = 0
everywhere except on the hy’(y) curve. For typical values of v, we have the corresponding values of hy’:

it 8/5 5/s 4/s s 5/3 2
hg 0.0278 0.0274  0.0254 0.0240 0.0152 0

When A= 0, then, Eg. (4.1) is valid. In this case, when the Alfvén velocity Hy(x)/ vVZrp, ®) in an un-
perturbed gas increases in the direction of the front propagation, the velocity of the wave front increases
and, consequently, displacements ¢ will increase with the front becoming unstable.

When A = 0, then, 6p/p, 6v/v, and 6u/u may approach unity. This means that the front of a shock wave
is absolutely unstable, and any small front perturbations are becoming large.

5. If we let Hy = const, then, the characteristic dimension of a perturbation buildup in a wave front
will be «f, where [ = |V 1n p, |7 is the so-called height of a homogeneous atmosphere, and « is a dimen-
sionless coefficient (of the order of a few units) which can be found by numerical calculations. The char-
acteristic time of instability buildup, according to Eq. (4.1), is of the order of the quantity «l/u. During
that time the wave front has broken down into separate small segments whose dimensions are of the order
of I (height of a homogenecus atmosphere). )

In the case of stellar catastrophes as, for example, flareups of novas or supernovas, this time is
comparable o the time required for a shock wave associated with such an explosion to reach the star sur-
face. Therefore, the wave front will appear very distorted when it reaches the surface, and it will not be
spherical. This will considerably affect the luminance curve [4] and may explain the nature of the magnetic force
lines in shedded shells. Indeed, the originally regular magnetic field of a star becomes interlinked with a
strong shock wave appearing at the star surface. At the same time, it becomes amplified and distorted by
it. If the magnetic field is sufficiently large, then, the development of small-scale pulsations may turn out
to suppress the magnetic field accompanying large-scale pulsations. For this reason, the field structure
is quasiregular in nature; its orientation in various large-scale elements is uncorrelated, but within each
element, it has a preferred orientation. Just such peculiarities of the magnetic field can be observed in
shells of flaring stars [5].

6. The propagation of a powerful shock wave in a medium of decreasing density is affected by energy
cummulation processes, i.e., by an energy transfer from a large mass of a substance to a small mass.
Such accumulation is particularly effective in the case of a magnetohydrodynamic wave (see, e.g., [6]). An
instability of the kind analyzed here may occur in an appropriate laboratory experiment, when its buildup
time is shorter than the diffusicn time of front segments into the system walls, which, for example, is of
the order of r/u or longer in the case of a shock wave traveling along a cylindrical tube of radius r. There-
fore, the earlier stipulated condition is satisfied if r> «{.
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